Predict target for user input.
Parameters: |
-
text
(str )
–
User input in the form of string.
|
Returns: |
-
List ( List
) –
Prediction probabilities of each class labels.
|
newsclassifier\predict.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | def predict(text: str) -> List:
"""Predict target for user input.
Args:
text (str): User input in the form of string.
Returns:
List: Prediction probabilities of each class labels.
"""
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = CustomModel(num_classes=7)
model.load_state_dict(torch.load(os.path.join(Cfg.artifacts_path, "model.pt"), map_location=torch.device("cpu")))
sample_input = prepare_input(tokenizer, text)
input_ids = torch.unsqueeze(sample_input["input_ids"], 0).to("cpu")
attention_masks = torch.unsqueeze(sample_input["attention_mask"], 0).to("cpu")
test_sample = dict(input_ids=input_ids, attention_mask=attention_masks)
with torch.no_grad():
logger.info("Predicting labels.")
y_pred_test_sample = model.predict_proba(test_sample)
prediction = y_pred_test_sample[0]
return prediction
|