clean_text(text)
Clean text (lower, puntuations removal, blank space removal).
newsclassifier\data.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
collate(inputs)
Collate and modify the input dictionary to have the same sequence length for a particular input batch.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
data_split(df, split_size=0.2, stratify_on_target=True, save_dfs=False)
Split data into train and test sets.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
load_dataset(filepath, print_i=0)
load data from source into a Pandas DataFrame.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
prepare_data(df)
Separate headlines instance and feature selection.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
prepare_input(tokenizer, text)
Tokenize and prepare the input text using the provided tokenizer.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
preprocess(df)
Preprocess the data.
Parameters: |
|
---|
Returns: |
|
---|
newsclassifier\data.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|